CLEAN STEEL PARTNERSHIP Infoday CDTI

Anna Domènech Corporate Innovation Manager Anna.Domenech@gcelsa.com

15 December 2022

GROUP

Who are we?

Million euro turnover forecast in 2020

Direct & indirect employees

8M Tons recycled

annually

A Family company

Vertically integrated

GROUP

2035 Zero Waste 2050 Net Positive

Key data

- Aligned with EU's goal to achieve climate neutrality by 2050 European Green Deal, Clean Planet for All strategy, Paris Agreement.
- Will develop and test lean CO2 technologies at large scales until 2030
- Aims to reduce CO2 from steel production by 80-95 % compared to 1990.

Horizon Europe Pillar and Cluster:	Pillar II – Cluster 4: Digital, industry and space
Type of partnership:	Co-programmed
Coordinating entity:	European Steel Technology Platform (ESTEP)
Total estimated budget:	EUR 1.7 bn
EU commitments:	EUR 700 m
Partners' commitments:	Up to EUR 1 bn
Predecessor under Horizon 2020:	The Clean Steel Partnership is a new partnership

CELSA

Objectives

To develop technologies at **TRL8** to **reduce CO2** while preserving the competitiveness of the EU steel industry both for **BF-BOF and EAF** routes including the wider steel value chain.

BF-BOF vs EAF routes

Emission sources

Scope 1 emissions in EAF process

Scope 2: Electricity & Scope 3: Lime, Alloys, Scrap.

3 Technology pathways for decarbonisation

		Circular Economy		
	Enhancing the recycling of steel (e.g. scrap in BOF/EAF*) and its by-products, Resource efficiency*BOF= Basic Oxygen Furnace EAF= Electric Arc Furnace			
Pathways/ Groups	Smart Carbon Usage (SCU)		Carbon Direct Avoidance	
	Process Integration with reduced use of carbon (+CCS)	Carbon Valorisation/ Carbon Capture and Usage (CCU) (+CCS)	(CDA)	
			Hydrogen	Electricity
Description	Integration of process steps and internal use of process gases	Using CO/CO2 from steel mill as raw material (Chemical conversion of CO/CO2)	Use of renewable electricity in basic steelmaking, e.g. production of H2 to replace carbon	

Source: Low Carbon Roadmap: Pathways to a CO₂-Neutral European Steel Industry, EUROFER, November 2019.

+ Enablers: digitalisation and social innovation.

CSP Specific Objectives

	1	Enabling steel production through carbon direct avoidance (CDA) technologies at a demonstration scale		
ectives	2	Fostering <u>smart carbon usage</u> (SCU – Carbon capture) technologies in steelmaking routes at a demonstration scale, thus cutting CO2 emissions from burning fossil fuels (e.g. coal) in the existing steel production routes		
ido c	3	Developing deployable technologies to improve <u>energy</u> and resource efficiency (SCU - Process Integration)		
Specific	4	Increasing the <u>recycling of steel scrap and residues</u> , thus improving smart resources usage and further supporting a circular economy model in the EU		
SP	5	Demonstrating clean steel breakthrough technologies contributing to climate-neutral steelmaking		
Ŭ	6	Strengthening the <u>global competitiveness o</u> f the EU steel industry in line with the EU industrial strategy for steel		

	Enhancing the recycling o	Circular Economy Enhancing the recycling of steel (e.g. scrap in BOF/EAF*) and its by-products, Resource efficiency *BOF= Basic Oxygen Furnace EAF= Electric Arc Furnace			
Pathways/	Smart Carbon	Smart Carbon Usage (SCU)		Carbon Direct Avoidance	
Groups	Process Integration	Carbon Valorisation/ Carbon Capture and Usage (CCU) (+CCS)	(CDA)		
	with reduced use of carbon (+CCS)		Hydrogen	Electricity	
			Use of re	enewable	
Description	Integration of process steps and internal use of process gases	Using CO/CO2 from steel mill as raw material (Chemical conversion of CO/CO2)	electricit steelmal productio replace	y in basic king, e.g. on of H2 to e carbon	

Overview of members

GEOGRAPHICAL COVERAGE

MEMBERS PER TYPE

- 54 Members
- In Spain: UNESID, Sidenor, CELSA Group

Calls

The topics of the Clean Steel Partnership are part of:

- Horizon Europe Work Programme: Cluster 4, Destination 1 (co-funded)
- RFCS:

- Regular: next expected deadline March 2023
- Big ticket: next expected deadline May 2023

CSP in Horizon Europe

TWIN GREEN AND DIGITAL TRANSITION

- Pilot started in 2021-22 and continued in 2023-24
- IA: 60% funding for with-profit entities

TWIN-TRANSITION-01-43: Low CO2 emission technologies for melting iron-bearing feed materials OR smart carbon usage and improved energy & resource efficiency via process integration (IA)

2023

2024

TWIN-TRANSITION-01-45: Circular economy solutions for the valorisation of low-quality scrap streams,
materials recirculation with high recycling rate, and residue valorisation for long term goal towards
zero waste (RIA)

TWIN-TRANSITION-01-44: Digital transformation and ensuring a better use of industrial data, which can optimise steel supply chains (IA)

TWIN-TRANSITION-01-46: CO2-neutral steel production with hydrogen, secondary carbon carriers and electricity OR innovative steel applications for low CO2 emissions (RIA)

TWIN-TRANSITION-01-43: Low CO2 emission technologies for melting iron-bearing feed materials OR smart carbon usage and improved energy & resource efficiency via process integration

Indicative budget: 23 M€ EU grant/project: 4-6 M€ IA - TRL: 5→6-7

Expected Outcomes:

- Integrating the next-generation iron-bearing feed materials melting technologies into an existing and optimised steelwork
 - Introduce novel or enhanced melting processes reducing CO2 by at least 20% compared to current state of the art
 - Integrate next-gen melting technologies into an existing and optimized steelwork; consider supply chain C footprint
 - o Enhanced use of iron-bearing feedstock intermediate products with variable content of carbon and metallization
- Cut CO2 emissions by SCU-PI; replace coal with, e.g., biogas, H2, or advanced management or systems/gases
 - Integrate information and communication technology (ICT) to optimize efficiency of steelmaking and downstream processing (heating and treatment furnaces) in steel plants.
 - Improve injection of metallurgical gases, H2-rich gases and/or H2 within the steel making processes.
 - Adapts gas handling systems to new gases and their related properties.
 - Use and recycle gases in integrated plants with mixed technologies routes (e.g., waste gases from neighbouring chemical plants or syngas produced from an external pyrolysis plants).
 - Enhance production and energy management of integrated plants with mixed routes (e.g. BF-BOF, DR-EAF).

Procedure: To ensure a balanced portfolio covering the <u>2 areas</u>, grants will be awarded to at least one project in each area

TWIN-TRANSITION-01-43: Low CO2 emission technologies for <u>melting iron-bearing feed materials</u> OR smart carbon usage and improved energy & resource efficiency via process integration

Indicative budget: 23 M€ EU grant/project: 4-6 M€ IA - TRL: 5→6-7

Expected Outcomes:

- Integrating the next-generation iron-bearing feed materials melting technologies into an existing and optimised steelwork
 - Introduce novel or enhanced melting processes reducing CO2 by at least 20% compared to current state of the art
 - o Integrate next-gen melting technologies into an existing and optimized steelwork; consider supply chain C footprint

RESEARCH ACTIVITIES:

- Adding variable % of iron-bearing feed materials with variable content of carbon and metallisation to the melting process without prejudice to the yield of the metallic charge.
- replace the use of carbon by climate-neutral sources or H2
- Reducing specific energy consumption optimising charge mix or preheating.
- Assess material quality of low value iron-ore recovering metal through reduction
- Controlling tramp elements
- Real time management tools for the melting process

TWIN-TRANSITION-01-43: Low CO2 emission technologies for melting iron-bearing feed materials OR <u>smart carbon usage</u> and improved energy & resource efficiency via process integration

Indicative budget: 23 M€ EU grant/project: 4-6 M€ IA - TRL: 5→6-7

RESEARCH ACTIVITIES:

- Injection / reutilisation of gases: H2, biogas
- Monitoring and control

- Cut CO2 emissions by SCU-PI; replace coal with, e.g., biogas, H2, or advanced management or systems/gases

- Integrate information and communication technology (ICT) to optimize efficiency of steelmaking and downstream processing (heating and treatment furnaces) in steel plants.
- Improve injection of metallurgical gases, H2-rich gases and/or H2 within the steel making processes.
- Adapts gas handling systems to new gases and their related properties.
- Use and recycle gases in integrated plants with mixed technologies routes (e.g., waste gases from neighbouring chemical plants or syngas produced from an external pyrolysis plants).
- Enhance production and energy management of integrated plants with mixed routes (e.g. BF-BOF, DR-EAF).

Procedure: To ensure a balanced portfolio covering the <u>2 areas</u>, grants will be awarded to at least one project in each area

TWIN-TRANSITION-01-45: Circular economy solutions for the valorisation of low-quality scrap streams, materials recirculation with high recycling rate, and residue valorisation for long term goal towards zero waste

Indicative budget: 12 M€ EU grant/project: 4-6 M€ RIA - TRL: 4→5-6

Expected Outcomes:

- Implement highly efficient technologies for recovering metal (iron and non-ferrous metals) and mineral fractions from inplant steelmaking residues. The recovery technology should condition the composition and properties of the residue. If appropriate, use high-throughput characterization and/or multi-modal approaches in analytical research infrastructures to build relevant structural/statistical information.
- Characterize and/or modify properties of residues in the present value chain and/or innovative applications, to valorize them. If appropriate, use high-throughput characterization and/or multi-modal approaches in analytical research infrastructures to build relevant structural/statistical information.
- Enhance use of low-quality scrap by new technologies and iron/steel making routes targeting high quality of finished products and reduced CO2 emissions.
- Develop technologies and processes for upgrade of low-grade iron ores and other iron-bearing materials.

TWIN-TRANSITION-01-45: Circular economy solutions for the valorisation of low-quality scrap streams, materials recirculation with high recycling rate, and residue valorisation for long term goal towards zero waste

Indicative budget: 12 M€ EU grant/project: 4-6 M€ RIA - TRL: 4→5-6

Expected Outcomes:

- Implement highly efficient technologies for recovering metal (iron and non-ferrous metals) and mineral fractions from inplant steelmaking residues. The recovery technology should condition the composition and properties of the residue. If appropriate, use high-throughput characterization and/or multi-modal approaches in analytical research infrastructures to build relevant structural/statistical information.
- Characterize and/or modify properties of residues in the present value chain and/or innovative applications, to valorize them. If appropriate, use high-throughput characterization and/or multi-modal approaches in analytical research infractructures to build relevant structures (statistical information).

RESEARCH ACTIVITIES:

- To reduce / reuse / recycle of by-products: slags, dusts, sludges.
- Increased scrap rates through better classification, management, sorting, charging.

ENERGY & EMISSIONS CIRCULARITY ZERO DIGITALISATION PEOPLE

Our main challenges for CSP

- Energy efficiency
- Using H2 as a fuel and as a reducing agent
- Heat recovery
- Energy & water management solutions
- Hybrid heating
- Replacing anthracite
- Scrap/residues recovery
 - Plastics, Al, Cu...
- Material characterisation
- Upcycling of by-products

Smart Carbon Usage (SCU)			
Process Integration	Carbon Valorisation/		
with reduced use of	Carbon Capture and		
carbon	Usage (CCU)		
(+CCS)	(+CCS)		

Enhancing the recycling of steel (e.g. scrap in BOF/EAF*) and its by-products, Resource efficiency *BOF= Basic Oxygen Furnace EAF= Electric Arc Furnace

What are we achieving?

What are we achieving?

